# Climate Modeling at the Petaflop Scale Using Semi-custom Computing

Lenny Oliker, John Shalf, Michael Wehner

Computational Research Division

National Energy Research Scientific Computing Center

Lawrence Berkeley National Laboratory

{loliker,jshalf,mwehner}@lbl.gov



### **Motivations**

- Accurately modeling climate change is one of the most critical challenges facing computational scientists today
  - Study anthropogenic climate change
  - Ramifications in trillions of dollars
- Current horizontal resolutions fail to resolve critical phenomena important to understanding the climate systems
  - Topographic effects: Both local and large scale
  - Tropical cyclones
  - At km-scale, important processes currently parameterized will be resolved
- We conduct speculative exploration of the computational requirements at ultra-high resolutions
  - Consider current technological trends
  - Explore alternative approaches to design semi-custom HPC solution
  - Show such calculations are reasonable within a few years time
  - Provide guidance to design of hardware/software to achieve goal
- Km-scale model would require significant algorithmic work as well as unprecedented levels of concurrency



### **Effects of Finer Resolutions**



Enhanced resolution of mountains yield model improvements at larger scales



### **Pushing Current Model to High Resolution**



20 km resolution produces reasonable tropical cyclones



### Kilometer-scale fidelity

- Current cloud parameterizations break down somewhere around 10km
  - Deep convective processes responsible for moisture transport from near surface to higher altitudes are inadequately represented at current resolutions
  - Assumptions regarding the distribution of cloud types become invalid in the Arakawa-Schubert scheme
  - Uncertainty in short and long term forecasts can be traced to these inaccuracies
- However, at ~2 or 3km, a radical reformulation of atmospheric general circulation models is possible:
  - Cloud system resolving models replace cumulus convection and large scale precipitation parameterizations.
    - Will this lead to better global cloud distributions



### **Extrapolating fvCAM to km Scale**

- fvCAM: NCAR Community Atmospheric Model version 3.1
  - Finite Volume hydrostatic dynamics (Lin-Rood)
  - Parameterized physics is the same as the spectral version
  - Atmospheric component of fully coupled climate model, CCSM3.0
- We use fvCAM as a tool to estimate future computational requirements.
- Exploit three existing horizontal resolutions to establish the scaling behavior of the number of operations per fixed simulation period.
- Existing resolutions (26 vertical levels)
  - "B" 2°X2.5° (200 km), "C" 1°X1.25° (100 km), "D" 0.5°x0.625° (50 km)
- Define: m = # of longitudes, n = # of latitudes
- **Dynamics** solves atmospheric motion, N.S. eqn fluid dynamics
  - Ops = O(mn²) Time step determined by the Courant (CFL) condition
  - Time step depends horizontal resolution (n)
- Physics Parameterized external processes relevant to state of atmosphere
  - Ops = O(mn), Time step can remain constant  $\Delta t$  = 30 minutes
  - Not subject to CFL condition
- Filtering
  - Ops = O(mlog(m)n²), addresses high aspect cells at poles via FFT
  - Allows violation of overly restrictive Courant condition near poles



### **Extrapolation to km-Scale**

Theoretical scaling behavior matches experimental measurements







By extrapolating out to 1.5km, we see the dynamics dominates calculation time while Physics and Filters overheads become negligible







# **Caveats and Decomposition**



- Latitude-longitude based algorithm would not scale to 1km
  - Filtering cost would be only 7% of calculation
  - However the semi-Lagrangian advection algorithm breaks down
    - Grid cell aspect ratio at the pole is 10000!
    - Advection time step is problematic at this scale
- We thus make following assumptions:
  - Use Cubed sphere or icosahedral schemes for km-scale
    - Allows 2D decomposition as opposed to current 1D scheme
  - Computational costs at current resolutions are similar
  - Scaling behavior of dynamics is same as lat/long algorithms
    - Two horizontal spatial dimensions + Courant Condition (n³)
- Physics time step can't stay constant if the subgrid scale parameterizations change.
  - Current cloud system resolving models use 10 second timestep.
  - Courant condition demands a 3.5 second timestep at km horizontal resolution for dynamics.
- Dynamics dominates the calculation







### Sustained computational requirements

- A reasonable metric in climate modeling is that the model must run 1000 times faster than real time.
  - Millennium scale control runs complete in a year
  - Century scale transient runs complete in a month
  - For the moment hold the vertical layers constant @ 26
  - Weather prediction requires 10x realtime speedup
- \* At km-scale minimum *sustained* computational rate is 2.8 Petaflop/s
  - Number vertical layers will likely increase to 100 (4x increase) resulting in 10 Petaflop/s sustained requirement





### **Processor scaling**





- A practical constraint is that the number of subdomains is limited to be less than or equal to the number of horizontal cells
  - Using the current 1D approach is limited to only 4000 subdomains at 1km
    - Would require 1Teraflop/subdomain using this approach!
  - Number of 2D subdomains estimated using 3x3 or 10x10 cells
    - Can utilize millions of subdomains
  - Assuming 10x10x10 cells (given 100 vertical layers) = 20M subdomains
    - 0.5Gflop/processor would achieve 1000x speedup over realtime
    - Vertical solution requires high communication (aided with multi-core/SMP)
  - This is a lower bound in the absence of communication costs and load imbalance



# **Memory Scaling Behavior**





- Memory estimate at km-scale is about 25 TB total)
  - 100 TB total with 100 vertical levels
  - Total memory requirement independent of domain decomposition
- Due to Courant condition, operation count scales at greater rate than mesh cells - thus relatively low per processor memory requirement
  - Memory bytes per flop drop from 0.7 for 200km mesh to .009 for 1.5km mesh.
  - Using current 1D approach requires <u>6GB per processor</u>
  - With 2D approach requires only <u>5MB per processor</u>



### **Interconnect Requirements**

Data assumes 2D 10x10 decomposition where only 10% of the calculation is devoted to communication



- Three factors cause sustained performance lower than peak:
  - Single processor performance, interprocessor communication, load balancing
- 2D case message size are independent on horizontal resolution, however in 1D case communication contains ghost cells over the entire range of longitudes
- Assuming (pessimistically) communication only occurs during 10% of calculation
   not over the entire (100%) interval increases bandwidth demands 10x
  - 2D 10x10 case requires: minimum <u>277 MB/s</u> bandwidth and maximum<u>18\_s</u> latency
  - 1D case would require minimum of <u>256 GB/s</u> bandwidth
- Note that the hardware/algorithm ability to overlap computation with communication would decrease interconnect requirements
- Load balance is important issue, but is not examined in our study



# **Today's Performance**

Oliker, et al SC05



- Current state-of-the-art systems attain around 5% of peak at the highest available concurrencies
  - Note current algorithm uses OpenMP when possible to increase parallelism
- Thus peak performance of system must be 10-20x of sustained requirement



# **Strawman 1km Climate Computer**

#### "I" mesh at 1000X real time

- .015°X.02°X100L (1.5km)
- 10 Petaflops sustained
- 100-200 Petaflops peak
- 100 Terabytes total memory
- Only 5 MB memory per processor
- 5 GB/s local memory performance per domain (1 byte/flop)
- 2 million horizontal subdomains
- 10 vertical domains (assume fast vertical communication)
- 20 million processors at 500Mflops each sustained
- 200 MB/s in four nearest neighbor directions
- Tight coupling of communication in vertical dimension

We now compare available technology in current generation of HPC systems



### **Declining Single Processor Performance**

#### Moore's Law

- Silicon lithography will improve by 2x every 18 months
- Double the number of transistors per chip every 18mo.
- CMOS Power

Total Power = 
$$V^2 * f * C + V * I_{leakage}$$
 passive power

- As we reduce feature size Capacitance (C) decreases proportionally to transistor size
- Enables increase of clock frequency (f)
  proportionally to Moore's law lithography
  improvements, with same power use
- This is called "Fixed Voltage Clock Frequency Scaling" (Borkar `99)

#### ❖ Since ~90nm

- $V^2 * f * C \sim = V * I_{leakage}$
- Can no longer take advantage of frequency scaling because passive power (V \* I<sub>leakage</sub>) dominates
- Result is recent clock-frequency stall reflected in Patterson Graph at right
- Multicore is here





SPEC\_Int benchmark performance since 1978 from Patterson & Hennessy Vol 4.



### **Learning from Embedded Market**

- Desktop CPU market motivated to provide max performance at any cost.
  - Maximizing clock frequency
  - Long pipelines, complex o-o-o execution = extra power
  - Add features to cover virtually every conceivable application
  - Power consumption limited only by ability to dissipate heat
  - Cost around \$1K for high-end chips
- Embedded market motivated to maximize performance at min cost and power
  - Want cell phones that last forever on tiny battery and cost ~\$0
  - Specialized: remove unused features
  - Effective performance per watt is critical metric
- The world has changed
  - Clock frequency scaling has ended
  - At limited for cost effective air-cooled systems
  - Price point for desktops/portables dropping (portables dominate market)
  - For HPC, cost of power is exceeding procurement costs!
  - Technology from embedded market is now trickling up into server designs
    - Rather than traditional trickle down flow of innovations
- What will HPC learn from the embedded market?
  - Simpler, smaller cores
  - Many cores on chip (100's of cores, not 2,4,8)
  - Lower clock rates
  - More specialization to applications



### **Architectural Study of Climate Simulator**

- We design system around the requirements of the km-scale climate code.
- Examined 3 different approaches
  - AMD Opteron: Commodity Approach Lower efficiency for scientific applications offset by cost efficiencies of mass market
    - Popular building block for HPC, from commodity to tightly-coupled XT3.
    - Our AMD pricing is based on servers only <u>without interconnect</u>
  - BlueGene/L: Use generic embedded processor core and customize System on Chip (SoC) services around it to improve power efficiency for scientific applications
    - Power efficient approach, with high concurrency implementation
    - BG/L SOC includes logic for interconnect network
  - Tensilica: In addition to customizing the SOC, also customizes the CPU core for further power efficiency benefits but maintains programmability
    - Design includes custom chip, fabrication, raw hardware, and interconnect
- Continuum of architectural approaches to power-efficient scientific computing



### Petascale Architectural Exploration

| Processor        | Clock  | Peak/<br>Core<br>(Gflops) | Cores/<br>Socket | Mem/<br>BW<br>(GB/s) | Network<br>BW<br>(GB/s) | Sockets | Power (based on current generation technology) | Cost (based on current market price) |
|------------------|--------|---------------------------|------------------|----------------------|-------------------------|---------|------------------------------------------------|--------------------------------------|
| AMD Opteron      | 2.8GHz | 5.6                       | 2                | 6.4                  | 4.5                     | 890K    | 179 MW                                         | \$1.8B                               |
| IBM BG/L         | 700MHz | 2.8                       | 2                | 5.5                  | 2.2                     | 1.8M    | 27 MW                                          | \$2.6B                               |
| Climate computer | 650MHz | 2.7                       | 32               | 51.2                 | 34.5                    | 120K    | 3 MW                                           | \$75M                                |

- ❖ AMD and BG/L based on list price
  - Of course discount pricing would apply, but extrapolation gives us baseline.
- Is it crazy to create a custom core design for scientific applications?
  - Yes, if the target is a small system.
  - In \$100M Petaflops system development costs are small compared to component costs.
  - In this regime, customization can be more power and cost effective than conventional systems.
  - Berkeley RAMP technology can be used to assess the design's effectiveness before it is built.
- Software challenges (at all levels) are a tremendous obstacle for any of these approaches.
  - Unprecedented levels of concurrency are required.
- ❖ This only gets us to 10 Petaflops *peak* thus cost and power are likely to be 10x-20x more.
  - However, in ~5 years we can expect 8-16x improvement in power- and cost-efficiency.



# **Architectural Exploration using RAMP**

#### What is Berkeley RAMP: Research Accelerator for Multiple Processors

- Sea of FPGAs linked together via hypertransport
- Provides enough programmable gates to simulate large chip designs
- Building community of "open source" hardware components (GateWare)
  - PPC4xx cores, Sun Niagra-1 netlists, Tensilica netlists
- Assemble gateware components (CPU and interconnects) using RDL (RAMP Description Language)
- Enables emulation of large clusters (100's or 1000's of nodes) using \$20K FPGA board.
  - Boots Linux it looks like the real hardware to the software
  - Runs 100x slower than realtime, compared w/ million time slowdown of simulators
  - Can change HW parameters and explore new design on daily basis

#### We can explore climate supercomputer with RAMP

- Use Tensilica tools to generate netlists for Tensilica core design
  - Netlists describe list of logic gates and connections between them
  - Netlists is mapped and routed onto FPGAs to create working circuit
  - Protects CPU vendors intellectual property
- Use RDL to emulate subset of supercomputer (multi-core multi-socket design)
- Tensilica Open64 compilers can build code for specialized instruction set
- Build/run pieces of climate code on emulated machined to assess design



### **Conclusions**

- Km scale resolution is a critical step towards more accurate climate models
  - Enables transition to more accurate physics-based cloud-resolving model
  - Supports unprecedented fidelity and accuracy for AGCM
- We extrapolate km-scale requirements to support such models
  - Developed specific requirements for sustained CPU, memory and interconnects
  - Provides guidance hardware and software designers
- Results show that riding the conventional technology curve will not enable us to reach these goals in the near future
  - Requires a more aggressive, power-efficient approach
- We suggest alternative approach to HPC designs by customizing hardware around the application -- not the other way around
  - Power-efficiency gains can be realized through semi-custom processor design
  - Otherwise energy costs for ultra-scale systems are likely to create a hard ceiling
  - We can reach our targets using near-term technology (without exotic technology)
  - Exploring opportunities to evaluate prototypes on Berkeley RAMP
- While custom hardware may not be cost-effective for mid-range problems, this approach may prove essential for handful of key Peta-scale applications
  - Future work will examine Fusion and Astrophysics
- Hardware, software, and algorithms are all equally critical, however HPC technology will probably be ready in advance of credible km-scale climate model
  - We must develop the algorithmic and architectural solutions simultaneously



# **Acknowledgements**

- Art Mirin (Lawrence Livermore Laboratory)
- David Parks (NEC)
- Chris Rowen (Tensilica)
- Yu-Heng Tseng (National Taiwan University)
- Pat Worley (Oakridge National Laboratory)

